Received 9 August 2006 Accepted 4 September 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Huan-Mei Guo,^a Fang-Fang Jian,^b* Li-You Zhou,^c Pu-Su Zhao^b and Jian Zheng^b

^aDepartment of Chemistry, Weifang College, Weifang 261061, People's Republic of China, ^bNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and ^cDepartment of Physics, Weifang College, Weifang 261061, People's Republic of China

Correspondence e-mail: zhaopusu@163.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.050 wR factor = 0.156 Data-to-parameter ratio = 16.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{21}H_{17}FN_2$, crystallizes with two independent molecules in the asymmetric unit. The pyrazoline and 4-fluorophenyl rings are planar. The phenyl ring at the 5-position and the pyrazoline heterocycle are almost perpendicular.

3-(4-Fluorophenyl)-1,5-diphenyl-2-pyrazoline

Comment

Five- and six-membered heterocyclic compounds are important constituents that often exist in biologically active natural products and synthetic compounds of medicinal interest (Gilchrist, 1998). Among them, 1,3,5-trisubstituted pyrazolines can be easily prepared from phenylhydrazine and chalcone derivatives (Nakamichi *et al.*, 2002). Some 1,3,5-triarylsubstituted pyrazolines can also be used as probes in a biological environment (Fahrni *et al.*, 2003). Here, we report the crystal structure of such a compound, (I).

The structure of (I) (Fig. 1) contains two crystallographically independent molecules in the asymmetric unit, hereafter named F1 and F2. In both molecules, the C=N bond lengths are slightly longer than those found in similar structures [1.291 (2) Å (Rurack *et al.*, 2000), 1.283 (2) Å for polymorph α (Kimura *et al.*, 1977) and 1.293 (3)/1.291 (3) Å (Ge, 2006)]. In contrast, the N1-N2 and N3-N4 bond lengths are shorter than those found in the above-cited structures [1.394 (3), 1.390 (3) and 1.384 (2)/1.385 (2) Å, respectively]. The C-F bond lengths are slightly shorter than those found in similar structures [*e.g.* 1.370 (2) Å; Joshi *et al.*, 1992].

All the bond lengths and angles for the phenyl and benzene rings in (I) are in normal ranges. In molecule F1, the pyrazoline ring and 4-fluorophenyl group define a plane (P1), the largest deviation being 0.068 (3) Å for atom N2. The dihedral angles between P1 and the phenyl rings at positions 1 and 5 of the pyrazoline are 12.64 (2) and 78.95 (3)°, respectively. The

All rights reserved

© 2006 International Union of Crystallography

organic papers

dihedral angle between the phenyl rings is 88.51 (2)°. Similarly, in molecule *F*2, the pyrazoline and 4-fluorophenyl rings also define a plane (*P*2), the largest deviation being 0.072 (3) Å for atom C42. The dihedral angles between *P*2 and phenyl groups at positions 1 and 5 of the pyrazoline are 17.59 (2) and 75.29 (3)°, respectively. The dihedral angle between the two phenyl rings is 88.32 (3)°.

Experimental

The title compound was prepared by reaction of phenylhydrazine (0.02 mol) and 1-(4-fluorophenyl)-3-phenyl-2-propenyl-1-ketone (0.02 mol) dissolved in acetic acid (40 ml). Single crystals suitable for X-ray measurements were obtained by recrystallization from EtOH at 298 K.

V = 1678.2 (6) Å³

 $D_r = 1.252 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Block, colourless

 $0.23 \times 0.22 \times 0.19 \text{ mm}$

 $w = 1/[\sigma^2(F_o^2) + (0.0765P)^2]$

Extinction correction: SHELXL97

Extinction coefficient: 0.023 (2)

+ 0.0731P] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.16~{\rm e}~{\rm \AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 293 (2) K

Z = 4

Crystal data

 $\begin{array}{l} C_{21}H_{17}FN_2 \\ M_r = 316.37 \\ \text{Triclinic, } P\overline{1} \\ a = 11.491 \ (2) \text{ Å} \\ b = 11.728 \ (2) \text{ Å} \\ c = 13.601 \ (3) \text{ Å} \\ \alpha = 89.44 \ (3)^{\circ} \\ \beta = 71.07 \ (3)^{\circ} \\ \gamma = 76.07 \ (3)^{\circ} \end{array}$

Data collection

Enraf-Nonius CAD-4
diffractometer3538 reflections with $I > 2\sigma(I)$ $m_{int} = 0.030$
 ω scans $m_{max} = 27.2^{\circ}$ Absorption correction: none
7526 measured reflections3 standard reflections
every 100 reflections
intensity decay: <1%</td>

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.156$ S = 1.017160 reflections 434 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

F1-C19	1.366 (2)	F2-C40	1.357 (2)
N1-N2	1.374 (2)	N3-N4	1.378 (2)
N1-C6	1.396 (3)	N3-C27	1.396 (2)
N1-C7	1.469 (3)	N3-C28	1.477 (3)
N2-C15	1.298 (2)	N4-C36	1.295 (2)
C1-C2	1.379 (3)	C22-C23	1.376 (3)
C3-C4	1.368 (4)	C25-C26	1.386 (3)
C7-C8	1.531 (3)	C29-C30	1.374 (3)
C8-C9	1.368 (3)	C37-C38	1.399 (3)
C16-C21	1.372 (3)		
N1-C7-C8	112.05 (17)	N3-C28-C29	112.28 (17)

Figure 1

The asymmetric unit of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level.

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 (aromatic CH), 0.97 (methylene CH₂) or 0.98 Å (methine CH). Isotropic displacement parameters for H atoms were fixed at U_{iso} (H) = 1.2 U_{eq} (C).

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL/PC* (Sheldrick, 1997*b*); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04) and the Doctoral Fund of Qingdao University of Science and Technology.

References

- Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Fahrni, C. J., Yang, L. & VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799–3812.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Ge, W.-Z. (2006). Acta Cryst. E62, 03109-03110.
- Gilchrist, T. L. (1998). *Heterocyclic Chemistry*, 3rd ed. London: Addison-Wesley Longman Ltd.
- Joshi, K. C., Bohra, R. & Joshi, B. S. (1992). Inorg. Chem. 31, 598-603.
- Kimura, T., Kai, Y., Yasuoka, N. & Kasai, N. (1977). Acta Cryst. B33, 1786– 1792
- Nakamichi, N., Kawashita, Y. & Hayashi, M. (2002). Org. Lett. 4, 3955–3957.
- Rurack, K., Bricks, J. L., Schulz, B., Maus, M., Reck, G. & Resch-Genger, U. (2000). J. Phys. Chem. A, 104, 6171–6188.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL/PC. Bruker AXS Inc., Madison, Wisconsin, USA.