Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Huan-Mei Guo, ${ }^{\text {a }}$ Fang-Fang Jian, ${ }^{\text {b }}{ }^{\text {* }}$ Li-You Zhou, ${ }^{\text {c }}$ Pu-Su Zhao ${ }^{\text {b }}$ and Jian Zheng ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Weifang College, Weifang 261061, People's Republic of China,
${ }^{\mathbf{b}}$ New Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and ${ }^{\text {c }}$ Department of Physics, Weifang College, Weifang 261061, People's Republic of China

Correspondence e-mail: zhaopusu@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.156$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(4-Fluorophenyl)-1,5-diphenyl-2-pyrazoline

The title compound, $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{FN}_{2}$, crystallizes with two independent molecules in the asymmetric unit. The pyrazoline and 4 -fluorophenyl rings are planar. The phenyl ring at the 5position and the pyrazoline heterocycle are almost perpendicular.

Comment

Five- and six-membered heterocyclic compounds are important constituents that often exist in biologically active natural products and synthetic compounds of medicinal interest (Gilchrist, 1998). Among them, 1,3,5-trisubstituted pyrazolines can be easily prepared from phenylhydrazine and chalcone derivatives (Nakamichi et al., 2002). Some 1,3,5-triarylsubstituted pyrazolines can also be used as probes in a biological environment (Fahrni et al., 2003). Here, we report the crystal structure of such a compound, (I).

(I)

The structure of (I) (Fig. 1) contains two crystallographically independent molecules in the asymmetric unit, hereafter named $F 1$ and $F 2$. In both molecules, the $\mathrm{C}=\mathrm{N}$ bond lengths are slightly longer than those found in similar structures [1.291 (2) \AA (Rurack et al., 2000), 1.283 (2) \AA for polymorph α (Kimura et al., 1977) and 1.293 (3)/1.291 (3) $\AA(\mathrm{Ge}$, 2006)]. In contrast, the N1-N2 and N3-N4 bond lengths are shorter than those found in the above-cited structures [1.394 (3), 1.390 (3) and 1.384 (2)/1.385 (2) \AA, respectively]. The $\mathrm{C}-\mathrm{F}$ bond lengths are slightly shorter than those found in similar structures [e.g. 1.370 (2) Å; Joshi et al., 1992].

All the bond lengths and angles for the phenyl and benzene rings in (I) are in normal ranges. In molecule $F 1$, the pyrazoline ring and 4 -fluorophenyl group define a plane ($P 1$), the largest deviation being 0.068 (3) A for atom N2. The dihedral angles between $P 1$ and the phenyl rings at positions 1 and 5 of the pyrazoline are 12.64 (2) and 78.95 (3) ${ }^{\circ}$, respectively. The

Received 9 August 2006
Accepted 4 September 2006
dihedral angle between the phenyl rings is $88.51(2)^{\circ}$. Similarly, in molecule $F 2$, the pyrazoline and 4-fluorophenyl rings also define a plane ($P 2$), the largest deviation being 0.072 (3) A for atom C42. The dihedral angles between $P 2$ and phenyl groups at positions 1 and 5 of the pyrazoline are 17.59 (2) and $75.29(3)^{\circ}$, respectively. The dihedral angle between the two phenyl rings is $88.32(3)^{\circ}$.

Experimental

The title compound was prepared by reaction of phenylhydrazine (0.02 mol) and 1-(4-fluorophenyl)-3-phenyl-2-propenyl-1-ketone $(0.02 \mathrm{~mol})$ dissolved in acetic acid (40 ml). Single crystals suitable for X-ray measurements were obtained by recrystallization from EtOH at 298 K .

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{FN}_{2}$
$M_{r}=316.37$
Triclinic, $P \overline{1}$
$a=11.491$ (2) \AA
$b=11.728$ (2) \AA
$c=13.601$ (3) \AA
$\alpha=89.44$ (3) ${ }^{\circ}$
$\beta=71.07$ (3) ${ }^{\circ}$
$\gamma=76.07(3)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer
ω scans
Absorption correction: none
7526 measured reflections
7160 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.156$
$S=1.01$
7160 reflections
434 parameters
H -atom parameters constrained

$$
V=1678.2(6) \AA^{3}
$$

$Z=4$
$D_{x}=1.252 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.23 \times 0.22 \times 0.19 \mathrm{~mm}$

3538 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=27.2^{\circ}$
3 standard reflections every 100 reflections intensity decay: $<1 \%$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0765 P)^{2}\right. \\
& +0.0731 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.18 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.023 \text { (2) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

F1-C19	$1.366(2)$	F2-C40	$1.357(2)$
N1-N2	$1.374(2)$	N3-N4	$1.378(2)$
N1-C6	$1.396(3)$	N3-C27	$1.396(2)$
N1-C7	$1.469(3)$	N3-C28	$1.477(3)$
N2-C15	$1.298(2)$	N4-C36	$1.295(2)$
C1-C2	$1.379(3)$	C22-C23	$1.376(3)$
C3-C4	$1.368(4)$	C25-C26	$1.386(3)$
C7-C8	$1.531(3)$	C29-C30	$1.374(3)$
C8-C9	$1.368(3)$	C37-C38	$1.399(3)$
C16-C21	$1.372(3)$		
N1-C7-C8	$112.05(17)$	N3-C28-C29	$112.28(17)$

Figure 1
The asymmetric unit of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level.

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic CH), 0.97 (methylene CH_{2}) or $0.98 \AA$ (methine CH). Isotropic displacement parameters for H atoms were fixed at $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL/PC (Sheldrick, 1997b); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04) and the Doctoral Fund of Qingdao University of Science and Technology.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fahrni, C. J., Yang, L. \& VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799-3812.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Ge, W.-Z. (2006). Acta Cryst. E62, o3109-o3110.
Gilchrist, T. L. (1998). Heterocyclic Chemistry, 3rd ed. London: AddisonWesley Longman Ltd.
Joshi, K. C., Bohra, R. \& Joshi, B. S. (1992). Inorg. Chem. 31, 598-603.
Kimura, T., Kai, Y., Yasuoka, N. \& Kasai, N. (1977). Acta Cryst. B33, 17861792.

Nakamichi, N., Kawashita, Y. \& Hayashi, M. (2002). Org. Lett. 4, 3955-3957.
Rurack, K., Bricks, J. L., Schulz, B., Maus, M., Reck, G. \& Resch-Genger, U. (2000). J. Phys. Chem. A, 104, 6171-6188.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL/PC. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

